
ALIGNMENT-FREE SEQUENCE
COMPARISON OVER HADOOP FOR
COMPUTATIONAL BIOLOGY

Giuseppe Cattaneo, Gianluca Roscigno, Umberto
Ferraro Petrillo, Raffaele Giancarlo

Sequence Comparison
•  Given two genomic sequences

X = x1, x2, …, xn
Y = y1, y2, …, ym

 where xi and yi belong to an alphabet of symbols like {A,C,G,T}

•  Determine how much similar X and Y are
•  Identify regions of similarity between X and Y

Sequence Comparison Methods

• Alignment-based Methods

• Alignment-free Methods

Sequence Alignment Methods

•  Well-studied, also from the experimental viewpoint
•  Inefficient in terms of computational time

… A G C T A G G T C C …

… A G C T A G G T C T …

… A G C T A G G T C C …

… G A G C T A G G T C …
… A G C T A G G T C C …

… G A G C T A G G T C …

•  Try different arrengements for two or more sequences, so to identify
regions of similarity

•  Return a similarity score, stating how similar two sequences, or parts of
them, are

•  Example: local sequence alignment with scoring

Alignment-free methods

•  Less accurate than alignment-based methods

•  More efficient in terms of computational time

… A B R A C A D A B R A …

… R A C A D R A B R A B …

… B E I J I N G …

… A B R A C A D A B R A …

… R A C A D R A B R A B …

… A B R A C A D A B R A …

… R A C A D R A B R A B …

… A B R A C A D A B R A …
… B E I J I N G …

•  Extract a set of features from input sequences
•  Similarity evaluated according to a distance function
•  Example: sequence alignment with k-mers counting

Objective of the Work
• The problem: Comparing big genomic sequences in
a sequential setting may be very time-consuming,
even for aligment-free methods

• Our goal:
• Understand the performance issues of alignment-free

methods in a sequential setting
• Develop efficient and scalable alignment-free distributed

methods (using MapReduce)

Outline of the talk
• Part 1: Alignment-free Methods

• Part 2: The Sequential Approach

• Part 3: The Distributed approach

•  Final remarks

PART 1: ALIGNMENT-FREE
METHODS

Alignment-free Methods based
on K-mers Counts

•  Let X be a sequence of characters
•  k-mers of X: all the substrings of length k existing in X

•  k-mers frequency vector (i.e., K-mers count) for X: the list of k-
mers of X with associated frequencies

•  Alignment-free methods evaluate the similarity between two
sequences by comparing their k-mers frequency vector
according to a distance measure

Step I: Extracting Frequency Vectors
C T A 1
A G C 1

G C T 1

A G C T A G G T C C …

Given X and k:

for each k-mer in X

 if Freq[k-mer] is null
 Freq[k-mer] = 1
 else
 Freq[k-mer]++

Freq

Step II: Evaluating distance between
Frequency Vectors
• Methods based on exact k-mers counts

• E.g.: Squared Euclidean, D2 Score, Feature Frequency
Profile

• Methods based on approximate k-mers counts
• E.g.: Spaced-Word Frequencies, Multiple Pattern

Spaced-Words, Co-Phylog

• Euclidean Squared Function

PART 2: THE SEQUENTIAL
APPROACH

A Software Framework for Alignment-free
Algorithms
•  Simplifies the development and the experimentation of alignment-free methods

•  Operates in two steps

•  Step 1: Features set extraction
•  Step 2: Distance evaluation

•  The only required code is about:
•  How features are represented
•  How features can be extracted from a sequence
•  How to evaluate the dissimilarity between features belonging to two distinct sequences

•  Built-in support for a set of standard features and dissimilarity measurements

(Squared Euclidean, D2 Score, Feature Frequency Profile, Spaced-Word Frequencies,
Multiple Pattern Spaced-Words, Co-Phylog)

Preliminary experiments
•  Experimental evaluation of euclidean squared distance

•  Sequences generated uniformly at random of increasing length
(≈50.000.000, ≈500.000.000, ≈1.500.000.000)

•  Variable number of sequences (5,10,15,20)
•  Increasing values of k (1,…,31)

•  Reference hardware: AMD Opteron 2.2 Ghz with 4 Gb RAM

•  Outcomes:
•  Execution time dominated by the extraction of frequency vectors à

Scalability Challenge
•  Unable to test for k > 10 due to the huge memory usage of frequency

vectors à Feasibility Challenge

PART 3: THE DISTRIBUTED
APPROACH

The MapReduce paradigm
• A computing paradigm for data-intensive applications

• Useful when crunching big data sets through aggregation

• Computation takes place through two functions:
•  map (in_key, in_value) -> list(out_key, intermediate_value)
•  reduce (out_key, list(intermediate_value)) -> list (out_key, out_value)

K-mers alignment-free via MapReduce
• Computation split in two steps

• Step 1: Frequency Vectors Extraction
•  Map(idSeq, S) à list (kmer, (idSeq, 1))
•  Reduce(kmer, list(idSeq, 1)) àlist (kmer, (idSeq, freq))

• Step 2: Distance Evaluation
•  Map(kmer, list(idSeq, freq)) à (idSeqA,idSeqB), (partDist, 1)
•  Reduce(idSeqA, idSeqB, list(partDist, 1)) à ((idSeqA,idSeqB), dist)

Optimizations
• Optimization 1: Sequences I/O

•  Input of sequences is managed by a custom file reader (SplitReader)
•  Small sequence files are aggregated into fewer and bigger files
•  Long sequences are virtually split in smaller chunks, each marked with a same id

and processed by a separate map task

• Optimization 2: In-memory Combiner
•  K-mers found by map tasks are not immediately reported but buffered

using a local temporary hash table

Distributed Experimental Settings
•  Same sequential experiments repeated on Hadoop

•  Reference hardware: cluster of 8 AMD Opteron 2.2 Ghz PCs
equipped with 32 cores and 128 Gigabyte of RAM, and connected by
an Infiniband network
•  Up to total 32 concurrent map/reduce tasks (up to 4 per node)
•  HDFS replication factor set to 2
•  HDFS block size set to 128 Megabytes

Scalability Challenge

0

10

20

30

40

50

60

70

80

90

100

110

Sequential 4 8 16 32

El
ap

se
d

Ti
m

e
(m

in
ut

es
)

Total Number of Concurrent Map/Reduce Tasks

Elapsed Times for evaluating the euclidean square
distance between 20 different sequences of ≈

1,600,000,000 characters each, with k=10 and an
increasing number of concurrent map/reduce tasks

Step 2

Step 1

Feasability Challenge

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

2 3 4 5 6 7 8 9 10 15

El
ap

se
d

Ti
m

es
 (m

in
ut

es
)

k

Elapsed times for evaluating the euclidean square distance
between 20 sequences of ≈ 1,600,000,000 characters each,

using 32 map/reduce tasks and increasing values of k

Step 2

Step 1

≈1,000,000,000 kmers

≈1,000,000 kmers

Feasability Challenge

0

2

4

6

8

10

2 3 4 5 6 7 8 9 10

El
ap

se
d

Ti
m

e
(m

in
ut

es
)

k

Elapsed times for evaluating the euclidean square distance
between 20 sequences of ≈1,600,000,000 characters each,

using 32 map/reduce tasks and increasing values of k

Step 2

Step 1

Final Remarks
•  Alignment-free methods suffer from severe performance issues when

run on very long sequences in a sequential setting

•  Switching to MapReduce/Hadoop yelds scalable performance and
helps in dealing with very long sequences, when using small values of
k (≤10)

•  Efficient processing of alignment-free methods with large values of k
still an open problem. Possible optimizations:
•  Implementation level: Distributed Cache?
•  Data distribution pattern level: Reformulation of the MR step 2?
•  Paradigm/Framework level: Apache Spark?

